
Proxynet - A Mechanism For Creating Connectivity Realms

Paul Vixie
<paul@vix.com>
Vixie Enterprises

24 October, 1995

Abstract

Proxynet is a set of library routines and network servers that can create multiple connectivity realms.
Multiple connectivity realms exist wherever direct network connectivity is impossible for toplogy
reasons, or proscribed for administrative or security reasons. Applications which must be able to
reach servers (or be reached by clients) in the other realms can use Proxynet as their agent.

1. Problem Statement and Definitions

Sometimes the full connectivity model of the Internet
is nonideal. In these cases it has become common to
install firewalls, route filters, application layer gateways,
and other devices designed to provide connectivity only
within some narrowly defined set of constraints.

Given RFC 1597, it is even becoming common for
network architects to violate the original IP model by
using what we call “ambiguous addresses,” where the
same network number is used by multiple unrelated,
discontiguous networks. In that situation, a network’s
location in the graph of interconnects becomes a crucial
element of its identity. A host which can reach more than
one network with the same network number considers
such a network number to be “ambiguous,” and some
means must be employed by which a host selects and
reaches the appropriate network for any given connection
or transaction.

No matter whether the connectivity constraint is
due to network number ambiguity or to administrative
policies (to implement security, for example), any set of
networks which does not permit the full interconnectivity
provided for in the IP model can be said to have multiple
connectivity realms.

We expect the reader to have a passing familiarity
with the Internet Domain Name System, Internet routing
concepts, and BSD system calls.

2. Introduction to Proxynet

Proxynet is an application layer tunnel. A network server
or client which wishes to do business in connectivity
realms other than its native one can use Proxynet as its
mechanism for reaching the other realms.

Proxynet consists of a set of library functions
that intercept system calls in a BSD style operating
system, and a daemon that runs on the gateways to
other connectivity realms. An application linked against
libproxynet.a will have several of its system calls
intercepted, such that rather than being direct downcalls
into the kernel, these calls give control to the Proxynet
library long enough for Proxynet to decide whether the
system call has any relevance to it. Some system calls
are allowed to proceed unimpeded, some are given new
side effects, and some have their results cached inside
Proxynet for use in future decisions. One of Proxynet’s
chief design goals was to maintain all relevant invariants
in the system call set; to that end, most applications we
have tested against have not required any source changes.
We succeeded pretty well at this goal; exceptions are
ftp-gw from TIS, which had a bug, and ftp from
BSD, which violated one of our assumptions. Also,
many applications do not call openlog, which renders
Proxynet’s internal syslog calls mute; we consider this
inconvenient.

Recent BIND resolvers have hooks which are called
by res_query before sending a request and after
receiving a response. These hooks permit the query
or the response to be modified in transit, or to have the
resolver’s name server list modified depending on the
query contents so that certain queries can be directed to
the appropriate name server. We use this latter feature so
that we can be sure to ask a name server whose root is in
the same connectivity realm as the object.

The Proxynet daemon must run on some gateway
host which can reach only a single instance of the
ambiguous network number. That is, while the network
is in fact ambiguous, due to routing policies it is
unambiguous to its gateway host. The gateway host must
be unambiguously reachable from the client host. It is
possible for all instances of an ambiguous network to be
reached via Proxynet and therefore served by gateway
hosts. However, that level of complexity and cost is not
necessary. Once the routing has been arranged so that
all but one instance of the ambiguous network number’s
route are not advertised to the client host, that remaining
instance is not, from a routing perspective, ambiguous.
The design philosophy we have used in our networks is
to choose the “nonproxy” instance of an ambiguous net
such that most traffic from the Proxynet client hosts does
not have to pass through a Proxynet gateway.

Consider the following diagram:

Outside

Inside

Secure
Router

Secure
Router

Proxy
Server

Proxy
Client

Imagine that many hosts on the Inside network are
using addresses in the internet class A network 42.0.0.0,
but that this network has been officially allocated to
a completely separate organization out on the Outside
network. The Secure Routers reject packets that do not
reflect the organization’s communications requirements,
and also ensure that the route for the Inside 42.0.0.0 is
never advertise to the Outside network. The Proxy Client
has an ambiguity problem, in that when it discovers a
need to reach a host on net 42.0.0.0, it has more than one

choice, since from its point of view, there is more than
one net using the 42.0.0.0 address. If an application
on Proxy Client sends a packet or opens a connection
to a host on 42.0.0.0, it will reach the one on the Inside
network. Similarly, if Proxy Server (or any other host on
the Outside network) sends a packet to a host on 42.0.0.0,
it will reach the 42.0.0.0 on the Outside network.

The function of Proxynet in this situation is two
fold: first, it must disambiguate connection requests such
that when a connection is made to a host on 42.0.0.0, the
“right” 42.0.0.0 is chosen. Second, it must provide the
means by which the “other” 42.0.0.0 is reached, when
required.

3. Theory of Operation

Fundamentally, all BSD network connection endpoints
are brought into existence via the (bind, listen,
accept) or connect system calls. By intercepting these
calls, we can redirect outbound connections or ensure that
corresponding inbound listener sockets are set up in other
connectivity realms. The system calls getsockname

and getpeername are an application’s only reasonable
means of learning the addresses of the endpoints of
a connection; by intercepting these calls, we can make
the application believe what we want it to believe
instead of having it learn the details of internal Proxynet
connections whose addresses might be surprising to the
application.

Let’s take a look at each system call that we
intercept, and explain what we do and why. While we’re
at it, let’s show the resolver hooks and learn what’s going
on inside them.

3.1. res_qhook

When the resolver is making a query, either as a result
of an application like Sendmail that calls res_query di-
rectly, or as a call from the high level gethostbyname or
gethostbyaddr routines, we are given an opportunity
to examine and perhaps modify the query before it goes
out. We do not presently modify the query, but we do ex-
amine it to the extent of unpacking its query name and
looking that name up in the library’s configuration file.
If this name is known to be proxied, then we temporar-
ily overwrite the resolver’s list of name servers with the
list of servers known to be able to answer queries for the
proxied name. In our configurations so far, these proxy
name servers have always been the same as the Proxynet
gateway hosts themselves, though this is not a require-
ment.

3.2. res_rhook

We do not currently make any use of this hook.
res_rhook is called after a reply has been received by
res_query and we could use this opportunity to modify
or examine the (name, address) tuples in the reply, but so
far we have not needed to do so.

3.3. bind

When a socket is bound to a wildcard port number in
IP/TCP or IP/UDP, the kernel’s response is to select a port
number at random. By the time we intercept the listen
call (see below), it is not possible for us to determine via
getsockname whether the port number was originally
wildcarded or not since the kernel has “filled it in.”
Therefore we capture this bit of information when the
bind call is made. Later when we intercept the listen
call, we will propagate the “wildcard” semantic to the
Proxynet daemon so that if the application did not care
what the port number was, Proxynet won’t care, either.

3.4. listen

Here we use getsockname to find out the name of the
socket, and if the address is one we should (according to
our configuration file) be proxying for, then in addition to
allowing the system’s listen call to proceed, we contact
the appropriate Proxynet daemon(s) and have them set
up a proxy listener. Those listeners will then forward all
incoming connections to our application’s real listener
socket.

Sometimes a listener socket needs to be proxied
even though it does not use an address or port number
which is registered as proxiable in the Proxynet library’s
configuration file. For instance, an FTP data connection
is established by the server toward the client; the client’s
socket is just opened on some arbitrary TCP address
and port number whose name is sent to the server over
the FTP control connection. We handle this condition
by maintaining an association tree of sockets, such that
when a listen is done on a socket which is associated
with a proxied socket, then the listener socket is proxied
also. This requirement bent our “no client source code
modifications” model since in the case of FTP, there just
was not enough hint information without the following
patch, which we include here to show the worst thing
we’ve had to do:

*** 1030,1034 ****

 perror("ftp: setsockopt (ign)");

 len = sizeof (data_addr);

! if (getsockname(data, &data_addr,

 &len) < 0) {

 perror("ftp: getsockname");

--- 1030,1037 ----

 perror("ftp: setsockopt (ign)");

+ proxhintFDset(fileno(cin), data);

+ if (listen(data, 1) < 0)

+ perror("ftp: listen");

 len = sizeof (data_addr);

! if (getproxname(data, &data_addr,

 &len) < 0) {

 perror("ftp: getsockname");

*** 1036,1039 ****

 }

- if (listen(data, 1) < 0)

- perror("ftp: listen");

 if (sendport) {

--- 1039,1040 ----

The reason this patch is needed is that the FTP

protocol has a port verb that requires the address of
the client’s host to be encoded into a text stream and
transmitted to the server. Since Proxynet cannot see or
edit the TCP stream used to transmit this encoded address,
some other means must be employed to ensure that the
address received by the server is of the Proxynet server
rather than the real client. Furthermore, Proxynet needs
to know when it sees the listen call that this listener
ought to be proxied. We had originally thought that just
intercepting the getsockname call would be enough,
but it turns out that the listen was being done too late,
and that the proxy status of the socket was ambiguous
anyway. We added a simple call into our Proxynet library
and changed a getsockname call to a getproxname

call. Naturally, a correct patch would use However,
Proxynet is smart enough to stay out of the way if its
services are not required – so the above patch does not
interfere with nonproxied operations.

3.5. accept

We intercept accept because the application is capable
of blocking here waiting for an incoming connection.
Because the proxy listener runs asynchronously, we have
no easy way to tell whether it has died or even if its host
has been rebooted and all context lost. Therefore, rather
than block in a system call that waits for connections,
we enter a select loop with a short timeout. If the

file descriptor of the intercepted accept ever becomes
readable, this means that an accept would not block and
we can permit the real system call to proceed. Otherwise,
we wake up every short while and ensure that all control
connections to our Proxynet daemons are still healthy.
If any become sick, we redo the connection and start up
another proxy listener for our application’s socket. In
this way we become resilient to gateway host reboots
or Proxynet daemon crashes. The actual details are
more obscure since the Proxynet daemon and the proxy
listeners are unsynchronized. But these are essentially
the facts.

The other thing we do, after the system’s accept
call has completed and we know we have a new
connection on our hands, is to look up the actual initiator
of the connection using getpeername. If the peer
address is one of our Proxynet gateways, then we ask
that host’s Proxynet daemon whether this was a proxied
connection or not. In this way, we can distinguish
between real connections that happen to come from a host
which has a Proxynet daemon, vs. proxied connections
where the peer information is actually way out in the other
realm somewhere.

3.6. select

For the same reasons stated above for accept, we must
intercept select and if it could block, we loop in our
own select with a short timeout, periodically verifying
the health of any proxy listeners we have running. Note
that we do not depend on TCP keepalives since they take
several minutes before closing dead connections, and we
need faster service.

3.7. connect

In connect, we need only look up the destination
address to see if it is something we should be proxying
for. If it is, then the appropriate Proxynet daemon is
told the destination, and after it sets up its own listener
and bidirectional data forwarder, we connect the
application’s socket to the proxy forwarder. If the
destination is not proxied, we run the real system call with
the application’s given destination.

3.8. close

We use the opportunity of a close call to clear out all
our internal hints about a file descriptor (e.g., whether it
is a proxied connection, and so on). Since close is often
called very early in the application’s initialization (in fact,
the resolver initialization is known to call close), this
also gives us a chance to ensure that the resolver hooks
are installed before the resolver is actually called.

3.9. getsockname

getsockname must be made to return an address on
the Proxynet gateway if the socket is connected to its
destination through Proxynet, since the application may
encapsulate this address in messages its sends to its server
(e.g., FTP’s “PORT” verb). This can cause consternation
inside applications, since it is usually reasonable to
assume that the address shown by getsockname is
one of the interfaces on the local host. We have not
encountered such an application yet but we recognize the
possibility that it may become a problem in the future.

3.10. getpeername

getpeername must be made to return the address of
the remote client in the alternate connectivity realm, if
the socket is connected through Proxynet. This can, like
our new semantics for getsockname (see above) cause
some confusion inside an application since the address
returned by getpeername may not be in the same IP

routing domain as the local host. However, since we will
intercept DNS lookups for PTR RRs for this address and we
will intercept connect calls to this address, we consider
it mostly safe. The only area of concern is an application
like INN which maintains many open TCP connections and
might end up using potentially ambiguous peer addresses
as if they were unique. So far this has not been a problem,
even for INN.

4. Configuration Files

Proxynet follows the tradition that if a system is compli-
cated and hard to understand, then its configuration files
ought to be complicated and hard to understand, too.

Proxynet’s configuration files follow the usual
conventions with regard to comments (“#” anywhere on
a line introduces a comment which lasts to the end of the
line) and blank lines (which are ignored). Blanks and
tabs which follow a delimiter (such as a “,”) are ignored.
A run of spaces, tabs, and/or newlines are the same as a
single space character.

Configuration elements are of the form:

key value-list [...] ;

A value-list is of the form:

value [, value] [...]

4.1. Client Side

/etc/proxynet.conf contains elements whose key is
proxy and whose value-lists are ordered as addresses,
domains, proxy servers and name servers. Each proxy

element describes an alternate connectivity realm. An
example appears in the appendix XXX.

addresses
The set of addresses which we will proxy for if
we encounter them. For IP, there are two forms
here. A wildcard address with a nonwildcard
port number indicates a listener address; this
matches attempts to listen on a socket which is
bound to the 0.0.0.0 address on the specified port.
For example, the address ip/tcp/0.0.0.0/119

would tell an NNTP server which had been linked
against libproxynet.a to open a proxy listener
in the connectivity realm this address appears
in. The other IP form is where the address is
a network or subnet and is followed by an “&”
and a mask. Either form can be preceded by
an “!” which tells the Proxynet library that if
the address matches, no further searching should
be done and the address should not be proxied.
This is useful if there is a wildcard entry further
down the list, which for IP would look like
ip/tcp/*/0&ip/tcp/*/0. For completeness,
an example of a negated network entry would be
!ip/tcp/42.0.0.0/0&XXX. Blanks around the &
are not allowed, due to parser limitations.

domains
The domain list tells the DNS resolver whether
or not to use a proxy name server. If no match is
found, the client’s usual name servers will be used
to resolve the name. If a proxy name server is used
to resolve a name to an address, then that address is
marked proxied for the duration of that application’s
execution, even if it does not appear on the addresses
list. Like addresses list elements, each domains
list element can be preceded by an “!” to stop the
search with an immediate negative answer, in case
a wildcard appears later on. A wildcard on the
domain list is simply “*”. Shell style “*” patterns
are permitted, with an implicit “*.” on the left
hand side. Thus !*.sony.com is the same as just
!sony.com. Don’t forget to put in your IN-ADDRs;
for example, !*.42.IN-ADDR.ARPA.

proxy servers
This is a list of Proxynet gateways. If there
is more than one, each application will use
“round robin” ordering to effect a primative
form of load balancing. An example would be
ip/tcp/198.93.3.1/555.

name servers
This is a list of DNS servers to be used when
resolving names that match something in the domains

list. Strictly speaking, only the ip/ elements are of
interest to DNS, since the resolver won’t try to reach
name servers using any non-IP address family. We
expect the definition of the name servers list to be
expanded somewhat when Proxynet is ported to a
non-IP protocol.

4.2. Server Side

5. Things We Did That Were Cool

Every project should have beneficient side effects or little
surprise packages in the form of useful artifacts or new
methods that can be put to other uses in the future. We
believe that this is very much true in Proxynet’s case.

5.1. Server Template

In the process of implementing the server side of the
Proxynet protocol, we realized that we had written
the same program a lot of times previously, but with
different protocol details. We therefore separated out
the initialization, command loop, parsing, reporting, and
error propagation in their own private module. The part
of the program that knows protocol details is completely
isolated. We believe that this template will be of use to
other protocol implementors who want to concentrate on
implementing the protocol, not a server infrastructure.

5.2. Multiprotocol Readiness

While the current implementation only supports IP/TCP,
every effort has been made in the protocol and in the
code to leave room for other protocols such as DECnet,
OSI/ISO, or even IPng. Naturally, the proof of our success
at this goal will come when at least one other protocol is
supported.

Within that constraint, however, we are intrigued
by the possibility of using Proxynet as an infrastructure
around which application layer tunnels can be built.
Some connectivity realms could be islands of IPng or
DECnet surrounded by an existing network of just plain
IP.

5.3. Memory File System for Metadata Storage

We determined that the Proxynet daemon needed a
reliable, easily examined database with strong atomic
locking for its list of currently proxied connections, and
we chose to use the BSD file system since it has all of
these attributes. However, performance was mediocre
since every connection opened or closed caused an
inode and/or directory update, which are synchronous
operations (that is, the disk head has to wriggle and the
platter has to rotate for a while before the application is
allowed to continue).

BSD provides a Memory File System which has every
semantic of a normal file system except persistence across
reboots. MFS keeps its data blocks in a process address
space, which is pageable if the system runs low on real
memory. This turns out to be exactly what we need
for our database, since inode and directory operations
that are usually synchronous to mechanical events are
instead synchronous only to a few context switches. Our
Proxynet gateway system’s df display contains two MFS
file systems rather than just the customary one for /tmp,
to wit:

Filesystem KBytes Avail Mounted on

/dev/sd0a 7924 377 /

mfs:16 31419 28273 /tmp

/dev/sd0d 201636 269 /usr

/dev/sd0e 242432 163563 /var

/dev/sd1a 8423 7579 /bak

mfs:18 3711 3334 /var/run

5.4. Generic Socket Address Library

Since our protocol uses printable text for its verbs and
responses, we found a need quite early on to standardize
on the print format of network endpoints. Our results in
this area may have applicability well beyond Proxynet,
since the Internet community itself has no single standard
for endpoint display and entry formats. Each protocol
tends to have a standard form for printing and entering
host addresses; in IP we have the “dotted quad”, while
in DECnet we have the area.node:: format. But when
it comes to complete endpoints, there is no universal
specifier. The closest thing we have is the leading
component of a WWW URL, but it assumes TCP and as
such, was not suitable for our needs.

First, we chose delimiters that were not valid
or customary characters in any of the protocols or
implementations we had on hand, or which were already
delimiters in those protocols. Our delimiters are slash
(“/”) and space (ASCII SP or HT). Slash is safe because the
only address family we know of that uses it is the UNIX

Domain, where it is already a delimiter. Spaces are safe
because only Appletalk, of the protocols we know of, uses
it; we expect to define an escape mechanism if we ever
port Proxynet to the Appletalk address family.

Second, we chose a hierarchy for several common
protocols, with the high order terms being given earliest
in the string. Ultimately, all we need to define is the
leading term (which is a constant in each address family)
and the structure of the following terms. For IP we chose,
not surprisingly, IP as our leading term, followed by the
protocol (TCP or UDP), followed by the host address (in
dotted quad form – no hostnames allowed), followed by
the port number if the protocol requires one (as UDP and
TCP both do). In practice this looks like the following:

ip/tcp/127.0.0.1/23

ip/udp/*/53

The first example is the Telnet server on the local
host (127.0.0.1 being a BSD convention for reaching the
local host, and 23 being the Telnet port number). The
second example is a wildcard: it is the DNS port on all
interfaces of the current machine. Wildcards of this
form are useful for server ports, where one wishes to
receive packets sent to any interface of a multihomed
host. Wildcard port numbers work, also, and are used in
the degenerate case of speaking of a host rather than an
endpoint. In fact, a wildcard port number will be imputed
on entry if none is given.

Some other protocols and their socket specifiers
(also called sockspecs) are:

dn/10.853/11

dn/11093/11

un/dev/printer

We have a very complete library of C functions
which parse, format, and otherwise manipulate these
sockspecs. We recognize a need in the Internet
community for this specification, and as time permits, we
will write an RFC on the socket specification syntax and
the C API of our library.

6. What We Didn’t Do And Why

6.1. UDP and Datagrams In General

To do Proxynet for datagrams, we would need to intercept
the sendto, send, write, writev, and recvfrom

system calls. Each datagram sent would need to have
its alternate realm source and destination addresses
encapsulated and then peeled off by Proxynet when

forwarding into the remote realm. Each datagram
received would need to have its alternate realm address
put into the recvfrom data so that the application
would not be confused by seeing a Proxynet gateway
address where it expects to find a remote client address.
Datagram applications which use unconnected sockets
and scatter their destination addresses could end up
running the “proxy decision” logic on every outbound
packet. The Proxynet gateway would have to have some
kind of timeout since there is no way to identify the end
of a datagram session – and there may not be one. Any
timeout we put in would ultimately help us find some
application that uses extraordinarily long delays between
adjacent packets.

In other words, we didn’t do UDP because it’s too
hard.

6.2. Source Routing

Source routing seems attractive since at least in the IP

case, there is a form (“strict” source routing) where
successive addresses in the source route need not be
from the same connectivity realm. We were concerned,
however, that many routers on the wide open Internet
implement source routing poorly, or in Screend’s case,
not at all. Then also, we wondered if we could make
our own routers secure against source routing attacks if
we enabled it for use in our production system. Finally,
we considered the possibility that IPng might deprecate
source routing altogether, and while Proxynet’s role in an
IPng universe is less than clear, we thought that this was
sufficiently risky to void this approach.

6.3. Stackable System Calls

In order to intercept a system call in a BSD system,
you must have your library provide a function with that
system call’s name, so that when the application is linked
against your library, it gets your versions of various
system calls instead of the “real” ones. If at some point
in your version of the system call, you determine that you
need to call the “real” one, you do it with the syscall
system call.

While the ability to do this is a wonderful thing, it
does not scale well. If another library (say, for example,
Prospero) wanted to intercept some of the same system
calls that Proxynet does, it would be a case of “first one
wins”, with respect to the ordering of the -l options on
the cc or ld link command. This could lead to chaos if
some of a library’s system call intercepts were taken, and
others not.

What we need is a way to dynamically push system
call intercept functions onto some kind of a stack, so that

each is given an opportunity to work its magic and each
has the easy option of deferring to the next layer of the
stack if it discovers no present use for its unique talents.
We considered implementing this sort of stackability,
but we considered the chances of its wide adoption to
be rather slim, and the consequences of Proxynet being
its only user to be rather grim. A solution is needed, but
Proxynet is blazing enough necessary new trails and this
was one that could be left for another day’s work.

6.4. Intercept fork

When a library uses static variables, it is subject to a mind
boggling hoard of thread safety and multiprocessing
issues. We have not invested the effort in making
Proxynet “thread safe,” since the usual method of doing
that requires changing the calling interface, which is a
course explicitly denied to us. However, we did run into
some problems with multiprocessing, and as this is a
more common programming tool than multithreading, we
had to solve it.

What happened was that as applications that were
linked against Proxynet would fork, all of the internal
file and socket descriptors used by Proxynet would
suddenly be shared by the parent and child. This led
to protocol errors where a child could and did consume
responses intended for the parent, and vice versa. Our
first cut at a solution was to intercept the fork system
call so that we could take the opportunity to close all the
descriptors in the child, forcing the child to reinitialize
Proxynet and form its own connections as needed.

However, we then encountered Sendmail, which
has a feature called “freeze files,” wherein the process’
data space is committed to disk and later restored.
Since Proxynet’s static variables were also committed
and restored, this put us in the untenable position of
having seemingly initialized internal state but no open
file or socket descriptors. Sendmail has since lost this
interesting feature, but we recognize this as a general
class of error that we wish to avoid.

So we removed our intercept for fork, and
instead, added code to detect the case where the process
identification (PID) suddenly changed. As soon as
Proxynet notices that this has happened, it reinitializes
all of its internal state, including freeing all of its
dynamic memory, closing all of its possibly-still-open file
descriptors, reloading configuration files, and so on. We
are not happy about this but know of no alternative.

6.5. Kernel Implementation

We recognize that doing our magic in user space has
certain pitfalls, not the least of which is that all

applications must be relinked and a few must be modified.
If the kernel could maintain the “proxy” attribute as part
of its internal connection state, many applications could
run unchanged.

Attractive as the kernel is in this instance, we elected
to work in user mode for several reasons:

1. One of the tenets of the UNIX kernel philosophy
is that anything which can be done in user space,
should be done in user space. We respect and agree
with this philosophy.

2. On systems with shared libraries, ubiquitous proxy-
ing can be had by editing those libraries. Dynami-
cally linked applications would begin proxying au-
tomatically.

6.6. Use SOCKS

The SOCKS system (by Koblas, et al) accomplishes much
the same goals as Proxynet. We do not agree with many
of the design decisions made in SOCKS, such as its binary
protocol (which saves precious little space but makes
debugging quite a bit harder), and its requirement that the
application source code be modified (to use rconnect

rather than connect, among other things). However, the
real reason we found SOCKS unsuitable is that it does not
solve the fundamental “multiple universe” problem that
Proxynet does.

Proxynet assumes that there can be multiple
connectivity realms using names or addresses that overlap
and are therefore ambiguous. It integrates the selection of
remote objects at the Resolver level, retaining state about
(name, address) tuples known by the resolver so that
the “proxy” decision can be made automatically by the
libraries. SOCKS, to the best of our knowledge, assumes
that each application will explicitly make the “proxy”
decision and make the appropriate library or system
calls to get where it wants to go. We were not willing
to extensively modify every application, since it would
have created a maintainance nightmare with respect to
integrating new releases of the vendor’s operating system
into the gateway.

In all fairness, we did not realize how much overlap
there would be between Proxynet and SOCKS until we
were almost finished. Had we known, we might have
chosen to extend or revamp SOCKS rather than starting
from scratch. Having finished our own system, we now
feel that literally everything SOCKS can do, Proxynet
can do better; the reverse is definitely not true. As
a parting shot, SOCKS does not provide any facility for
load balancing; if the traffic load warrants multiple proxy
gateways, Proxynet will automatically load balance

incoming and outgoing connections between them.
SOCKS can use multiple servers for “fallback” but not for
load balancing.

7. The Proxynet Protocol

The Proxynet protocol is in the usual ARPA style, with
verbs and arguments flowing in one direction, numeric
result codes and detail elements flowing in the other
direction, and CR-LF pairs acting as record separators. We
did a few of the usual extra UNIXy things like permitting
bare LFs as record separators. Continuations are, as
usual, indicated by a dash (“-”) immediately following
the numeric result code. Numeric result codes on
continuation lines are transient or meaningless – the last
one “wins.”

We did an unusual thing, which was using the <

and > characters in responses as delimiters to tokens
of information which may be of interest to the client.
Clients are expected to ignore the text outside the (<,
>) characters rather than treating it as a template. The
protocol specifies only the numeric response codes, and
the order and meaning of the response tokens, not the
intervening text.

Protocol details are shown below. Note that in our
protocol trace examples, we have broken the example text
with \ characters, which are not part of (or permitted by)
the protocol.

7.1. test – test the address parser

test ip/udp/127.1/53

250 <ip/udp/127.1/53> \

 is <ip/udp/127.0.0.1/53>

test allows a developer to test her assumptions about
how a sockspec will be parsed. As you can see above,
the result is just an echo of the input, along with an
expanded version of the input. test is not a required
verb, but we like it. The response tokens for test are the
input address, and the parsed/regenerated version of that
address.

7.2. conn – connect to a remote server

conn ip/tcp/16.1.0.2/23

201 <ip/tcp/42.128.1.1/1023> \

 listening (pid 6824)

conn causes the Proxynet server to initiate a connection
to the specified destination, gatekeeper.dec.com’s
Telnet service in this example. The response token in
this case is the client local address (cla) of the proxy
connection. The appropriate action on the client’s part

at this point is to initiate a new connection to TCP port
1023 at IP address 42.128.1.1. Indeed, executing the
shell command telnet 42.128.1.1 1023 in another
window after running the above example gives the
login: prompt from Gatekeeper.

The proxy connection will time out in a minute or
so if no client connects to it. The connection must come
from the same host that initiated the Proxynet session, for
security reasons. The Proxynet server itself is not blocked
by this operation, and so a client can initiate multiple
simultaneous connections, and need not “consume” them
in any particular order. We feel a need for some kind of
quotas in this area but we’re still considering the details.

7.3. list – list all open connections

list

250-<ctl ip/tcp/192.68.129.10/1024\

 cla ip/tcp/192.68.129.10/119 \

 cpa ip/tcp/*/119 \

 spa ip/tcp/*/119 \

 sra ip/tcp/*/119 \

 flg 0x3>

250-<ctl ip/tcp/*/119 \

 cla ip/tcp/192.68.129.10/119 \

 cpa ip/tcp/198.93.3.1/4712 \

 spa ip/tcp/*/119 \

 sra ip/tcp/16.1.0.18/1366 \

 flg 0x0>

250 <>

The above example has been deliberately truncated by
us since the actual list of connections was quite long.
list, as you can see, shows a list of all proxy connections
currently open through the Proxynet gateway. Each
response token is a complex string which is a list of
(name, value) pairs. The end of the list is denoted
by an empty response token. Note that the existing
implementation happens to use a separate numeric
response code for each list element, with continuations;
this is not required other than by the ARPA style 990
character line limit. Client implementations must be
prepared to parse multiple list elements per response
line.

You will need to follow along very closely with the
example to understand this discussion. The (name, value)
pairs are as follows:

ctl control address. This is either the address of the
client’s of the Proxynet session that created this
connection or listener, or, on incoming connection
created through a proxied listener, it will be will be
the spa of the listener.

cla client local address. This is the address of the
endpoint on the client host.

cpa client proxy address. This is the address of the
endpoint on the Proxynet gateway, in the client’s
connectivity realm.

spa service proxy address. This is the address of the
endpoint on the Proxynet gateway, in the remote
connectivity realm.

sra service remote address. This is the address of the
endpoint on the remote host, in its connectivity
realm.

flg flags. This is an internal mask of boolean bit masks.
0x3 happens to mean that this is a listener (as
opposed to the default, which is a connection), but
conforming clients are not allowed to interpret this
field at this time.

7.4. find – locate open connections

find sra ip/tcp/16.1.0.18/1366 ctl

250 ctl <ip/tcp/*/119>

find is the underlying mechanism of the client’s
proxified versions of the getsockname and getpeer-
name system calls. The parameters are (key, value, re-
sult) where key and value identify the connection being
inquired of, and result is the field whose contents we want
to learn. It is an error to specify a result which is equal
to the key. In the above example we asked the control
address of the first connection whose remote address is
16.1.0.18, and we found that it was an NNTP server.

Care must be taken with find since several fields
are context dependent, having meaning only in the
connectivity realm they came from. Also, since find

stops on its first match, care must be taken to specify a key
and value which will be unique if present. We recognize
the need to specify multiple (key, value) pairs so that
the search can be narrowed and unique matches found
among a wider input set. find does what we needed for
our getsockname and getpeername, but it is not as
generally useful as we would like.

7.5. lstn – create a listener

lstn ip/tcp/42.1.3.2/119 \

 ip/tcp/*/100

201 <ip/tcp/*/100> listening \

 (pid 85)

lstn creates a listener. The parameters are cla and
spa. The above example will cause connections to TCP

port 100 on any interface on the Proxynet gateway to
be accepted and then forwarded to port 119 on the local
host (whose IP address happens to be 42.1.3.2 in
our private connectivity realm. It is possible to create
listeners that point to other hosts than the client’s, but
this is better done by clients running on each host that
requires a proxy listener. The hard part of using lstn

turns out to be finding the address which is “closest
to” the Proxynet server when the client is multihomed.
Generally the result of getsockname on the Proxynet
session connection is suitable for this use.

If the Proxynet server cannot bind to the given spa
due to a specific error condition called “address already in
use,” it will sleep for 60 seconds and try again. If it tries
and sleeps three times, it reports a failure. The reason for
this is that when a TCP connection dies, its port number
becomes unusable by other TCP connections on that host
for a period of about three minutes. This is called the
“TIME_WAIT” feature in BSD networking. An example of
this is shown below. Note that the client pays no attention
to any numeric code other than the last one.

lstn ip/tcp/*/119 ip/tcp/*/119

231-EADDRINUSE, sleeping

231-EADDRINUSE, sleeping

505 Address already in use

7.6. help – show a brief help message

help

250-test a \

 (test sock addr ’a’)

250-conn sra \

 (connect to ’sra’)

250-list \

 (list connections)

250-find srch a sel \

 (find ’srch’, report ’sel’)

250-lstn cla spa \

 (lstn as ’spa’, fwd to ’cla’)

250-help [cmd] \

 (show command syntax summary)

250-noop noop \

 (do nothing)

250 quit \

 (close connection)

When running Proxynet by hand (usually via telnet), it
is sometimes necessary to jog one’s memory as to exact
command syntax and details. As can be seen from the
above example, help also takes a command name as its
optional parameter. If specified, only the help text for
that command will be shown.

7.7. noop – do nothing

Every protocol needs one. ’Nuff said.

7.8. quit – end the protocol

quit

250 Goodbye

This terminates the Proxynet session, causing the Prox-
ynet server to close its end of the control connection.

